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The configuration, amplitude, and evolution of average vibrational-oscillatory 
flows in a rectangular cavity are determined under weightlessness conditions. 
The convection mode transition is discussed. 

Different nongravitational heat and mass transfer mechanisms under weightlessness con- 
ditions have been investigated intensively in recent years. Among them, vibrational thermal 
convection, the average (secondary) flow occurring in a cavity with a nonisothermal fluid 
or gas performing oscillations (see [i, 2]), is of indubitable interest. Vibrational con- 
vection in a rectangular cavity whose opposite boundaries are maintained at distinct homo- 
geneous temperatures was studied in [3, 4]. The heating mode for which the temperature 
varied linearly along one of the cavity boundaries (long), which corresponded to experimen- 
tally realizable preheating conditions, was examined in [5]. The ambiguity of the station- 
ary modes and the transitions between them were disclosed. Processes in a cavity with pre- 
heating of the kind mentioned are considered in this paper in the domain of large values of 
the vibrational Grashof number when the existence is possible of oscillatory convection 
modes in addition to the stationary ones. 

Let us examine a two-dimensional rectangular domain O<~x<~L, O~y~H filled with 
fluid. All the domain boundaries are solid. It is assumed that there is no static gravity 
field. The cavity together with the liquid performs high-frequency vibrations along the y 
axis. The preheating conditions are the following. The boundaries x = 0 and x = L parallel 
to the vibration axis are maintained at the temperature T=AE+O and T = 0, respectively. 
Therefore, the temperature difference in the section y = 0 equals O and grows linearly 
with the coordinate y. The cavity endfaces y = 0 and y = H perpendicular to the vibration 
axis are heat-insulated. 

In the case when the oscillation frequency is sufficiently large, the averaging method 
utilized in [i, 6] permits a closed system of equations to be obtained that describes the 
average velocity, temperature, and pressure fields 
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Because  t h e  t e m p e r a t u r e  on t h e  b o u n d a r y  i s  inhomogeneous ,  and a l s o  b e c a u s e  o f  t h e  
f i n i t e n e s s  o f  t h e  c a v i t y  l e n g t h ,  m e c h a n i c a l  e q u i l i b r i u m  t u r n s  o u t  t o  be i m p o s s i b l e  ( s e e  [ 1 ] )  
and v i b r a t i o n a l  c o n v e c t i o n  i s  e x c i t e d  in  t h e  f l u i d  f i l l i n g  t h e  c a v i t y .  We assume t h a t  t h e  
f l u i d  p e r f o r m e d  p l a n a r  m o t i o n .  We i n t r o d u c e  t h e  s t r e a m  f u n c t i o n  o f  t h e  a v e r a g e  and f l u c -  
t u a t i n g  m o t i o n s  by t h e  r e l a t i o n s h i p s  
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Stationary motions for G = 350: 
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Dependence of ~ on t for G = 420 (a); 700 (b); 

15oo (c) .  

We select L, LZ/v, v/L, @ , respectively, as the units of distance, time, velocity, and 
temperature. After elimination of the pressure, we obtain a system of plane vibrational 
convection equations in the dimensionless form 
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The boundary conditions have the form 

x = 0 : l b - -  0~ --0, F = 0 ,  T=l-4-ag;  
Ox 

x = l - ~ =  0~ . = 0 ,  F = 0 ,  T = 0 ;  
Ox 
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The problem is characterized by four dimensionless parameters, the vibrational Grashof 
number G= (~bQ@L)~/2w =, the Prandtl number P = v/X, the geometric parameter s = H/L (the 
ratio between the domain length and width), and the dimensionless temperature gradient on 
the boundary a =AL/O 

The boundary value problem (3) and (4) was solved by finite differences. An explicit 
scheme of second order accuracy in a 15 • 30 mesh was used to find the temperature and velo- 
city vortex (see [7, 8]). The stream function fields were calculated by the method of se- 
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Fig. 3. Dependence of ~-2 on G. 

Fig. 4. Phase trajectory (G = 420). 

Fig. 4 

quential upper relaxation. The accuracy of iterating the Poisson equation was i0 -s for 
oscillatory motion computations and 10 -4 for stationary motion computations. The calcula- 
tions were performed for the following parameter values: i) ~ = 5, a = 0.5; 2) ~ = 5, a = i; 
3) s = 8, a = i. The Prandtl number in the computations was fixed: P = i. 

The following verification of the method was performed in the nonstationary mode inves- 
tigations: diminution of the spatial step (computations on a 30 • 50 mesh), diminution 
(twofold) of the time step, raising the accuracy of iterating the Poisson equation (to i0-~). 
The configuration and amplitude of the oscillatory motions were practically invariant here. 

Let us examine the results of computations in greater detail for the case s = 5, a = i. 
Two stationary motions are realized in the system in the situation under consideration. One 
is excited by arbitrarily small values of the vibrational Grashof number (mode i), the other 
occurs in a threshold manner (mode 2). For small values of G mode 1 is a single-vortex mode. 
As G increases the motion is rearranged into a three-vortex one in an evolutionary manner 
(see Fig. la). The emergence into mode 2 is realized in a "hard" manner (by giving the per- 
turbation a finite amplitude). This mode occurs for O9.180; near the threshold the motion 
has a three-vortex configuration which later becomes a four-vortex one as G grows (see Fig. 
Ib). The stability domains of the configurations corresponding to modes 1 and 2 overlap in 
the range of values 180<~G~<400. 

However, the stationary modes are not those uniquely possible. For G~GI=400 the 
stationary motions (modes 1 and 2) become unstable (practically simultaneously in the numeri- 
cal computation) and regular oscillations (mode 3) occur in the system. 

To describe the nonstationary modes we introduce a quantity that is the mean value of 
the stream function over all the nodes i, j of the computational mesh 

(K is the total number of nodes), as well as the quantities 4+ and 4- that are, respectively, 
the sum of all the positive and negative values of the stream functions over all the mesh 
nodes. 

The dependence ~(t) is represented in Fig. 2 for different values of the Grashof number 
(mode 3). As the parameter G increases the amplitude of the oscillations is practically 
invariant while the period of the oscillations (Fig. 3) and their shape depend substantially 
on the Grashof number. Three characteristic sections can be isolated in Fig. 3. The quan- 
tity ~-2 grows in the section 400~<G<~900 , while the graph of ~(t) has a "step" shape 
(Fig. 2a). The period of the oscillations in the range 900~<0~|500 retains a constant 
value while the oscillations acquire an almost sinusoidal shape (Fig. 2b). A further 
increase in G (1500~G~<2100) is accompanied by a diminution in the quantity ~-2 and the 
shape of the oscillations is complicated substantially here (Fig. 2c). 

The dependence ~-2(G) permits expressing the proposition about the origination of a 
cycle from a saddle-node separatrix. 
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Fig. 5. Dependence of 
Nu on G for the station- 
ary modes 1 and 2. 

The phase trajectory for G = 420 is presented in Fig. 4. 

For 092100 a stationary mode which is similar to mode 2 in configuration is built 
up in the system. 

We introduce the Nusselt number 

1 aT 
Nu = .( - Ox dy  

0 

f o r  t h e  h e a t  f l u x  c h a r a c t e r i s t i c s  in  t h e  c a v i t y .  

The dependence  o f  Nu on t h e  G r a s h o f  number i s  r e p r e s e n t e d  in  F i g .  5 f o r  t h e  s t a t i o n a r y  
modes. It is interesting to note the closeness of the mode 1 and 2 heat fluxes in the neigh- 
borhood of G ~ 180. This is associated with the fact that the total vortex intensities 
for motions of both kinds are approximately identical for G~180 Upon the build up of a 
nonstationary mode in the system, the heat flux, as all the integral and local flow charac- 
teristics also, experiences periodic oscillation. 

As computations showed, regular oscillations indeed occur for ~ = 5, a = 0.5 and ~ = 8, 
a = 1. 

Therefore, the domain of regular oscillations turns out to be bounded in the Grashof 
number by stationary motion domains. 

NOTATION 

x, y, Cartesian coordinates; v, T, and p, average velocity, temperature, and pressure 
(the primes refer to dimensional quantities); ~, F, stream functions of the average and 
fluctuating motions; w, v~ , solenoidal and irrotation parts of the vector field Tn; n, 
unit vector directed along the vibration axis; ~, b, angular velocity and amplitude of the 
vibrations; ~, coefficient of kinematic viscosity; X, temperature diffusivity coefficient; 
8, thermal expansion coefficient; p, density; @ , temperature difference; 4, a geometric 
parameter; P, Prandtl number; G, vibrational Grashof number; a, temperature gradient; ~, 
period of oscillation; ~, average value of the stream function; and Nu, Nusselt number. 
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